
Protocol Summary between TPS Backend Components

2004/1/09 (Updated 2009/9/29)
Note: This document is informational only. Numerous changes have been made to the underlying source
code since this document was originally written. Although every effort has been taken to ensure that changes
have been reflected in this updated version some discrepancies may exist. Please refer to the source code and
headers in the code repository for authoritative information.

1.0 Overview

The following picture shows various Token Management front-end and backend components.

Components Description

TPS This component is responsible for

• Format Operation
• Handling Pin Reset Operation
• Handling Enrollment Operation

CA
This component is responsible for

• Issuing Certificates.

TKS

This component is responsible for

• the generation of MACing session key and host cryptogram
• encrypt data using one of the keys in the token key set
• updating key sets for tokens.

DRM
This component is responsible for

• the generation and archival of the user's encryption keys.

2.0 Protocols

This section details the protocols among back end components.

2.1 Protocol Between ESC and TPS

TPS is exposes its service in the url below:
The angle brackets "<>" are for the purpose of emphasizing the format here and are not part of the syntax.

http://<ra_host>:<ra_port>/nk_service

Each request and response is encapsulated as one chunk in HTTP1.1's chunked encoding.

s=<message_size>&msg_type=<message_type>&<parameters>

where,

The angle brackets "<>" are for the purpose of emphasizing the format here and are not part of the syntax
<message_size> should be the size of the message in bytes excluding 's=<message_size>&' portion
<message_type> is the message type. See section 2.1.1 and 2.1.2 for supported values
<parameters> is a set of message type specific parameters. See section 2.1.1 and 2.1.2 for supported
parameter names and values. Parameters are URI encoded

For example, a client could send the following to represent a “begin op” operation which is used by ESC to
kick off other fundamental operations such as Format and Pin Reset.

s=22&msg_type=2&operation=3

where,
msg_type=2 means BEGIN_OP
operation=3 means RESET_PIN operation.

2.1.1 TPS accepts the following messages:

Message
Type

Activated
Parameter
Names

Parameter Values Description

2
operation,
[extensions]

The value for 'operation' parameter should be either 1,
3, or 5. ENROLL,RESET_PIN, FORMAT

Ex:

msg='msg_type=2&operation=5&extensions=tokenType
%3DuserKey%26clientVersion
%3DESC+1%2E0%2E1%26tokenATR
%3D3B9F9681B1FE591F078025A0000000565736353
03000010080%26statusUpdate%3Dtrue
%26extendedLoginRequest%3Dtrue%26

The “extensions” are optional parameters giving TPS
additional info.

Begin Op

4

only when
auths.enable=true
in the CS.cfg of
TPS.

user_id
(screen_name),pa
ssword

The values for 'user_id', and 'password' parameters
should be string.

Ex:

s=33&msg_type=4&screen_name=user1&password=12
34

Login Response

17

only when
auths.enable=true
in the CS.cfg of
TPS.

UID,PASSWOR
D

The values for “UID” and “password” parameters
should be a string.

Ex:

s=33&msg_type=17&UID=user1&PASSWORD=1234

Extended Login
Response

12 new_pin

The value for 'new_pin' parameter should be a string.

Ex:

s=33&msg_type=12&new_pin=1234

New Pin Response

10 pdu_size,pdu_dat
a

The value for 'pdu_size' parameter should be number.
The value for 'pdu_data' should be the string
representation of the URL encoded data.
Each unprintable byte of the pdu data is represented by a

Token PDU
Response

'%' followed by two characters.

Ex:

s=111&msg_type=10&pdu_size=47&pdu_data=%9F
%7F%2A
%04%00%00%00%00%104%01%01%03%00%04%2A
%00%00%00%0C%EB%07%40%F4%5B
%00%04%00%00%00%00%98%C1%06%00%E4%FF
%FF%FF%2A%00%00%00%60%5B%90%00

15 current_state

This message merely echoes back to the server the last
value of “current_state”. Each message in our protocol
must have a message in each direction.

Ex:

s=27&msg_type=15¤t_state=2

Status Update
Response

2.1.2 TPS returns the following responses:

Message
Type

Activated Parameter Names Parameter Values Description

3

only when
auths.enable=true
in the CS.cfg of
the TPS.

invalid_pw, blocked

The values for both 'invalid_pw' or 'blocked' should be
either 0 or 1. 0 represents false, 1 represents true. Both
are usually 0 in practice.

Ex:

s=33&msg_type=3&invalid_pw=0&blocked=0

Login Request

16 only when
auths.enable=true
in the CS.cfg of
the TPS

auths parameters
in TPS control the
UI displayed by
ESC.

Auth.instance.0.ui
.description.en=T
his authenticates
user against
LDAP directory.

….

auth.instance.0.0.

invalid_login,blocke
d,title

This style used when using the pop up LDAP
Authentication method. The values for both
'invalid_login' or 'blocked' should be either 0 or 1. 0
represents false, 1 represents true. Both are usually 0
in practice. The value of title is a simple protocol
understood by ESC, used to construct a simple auth
popup on the screen. Ex:

s=338&msg_type=16&invalid_login=0&blocked=0&t
itle=LDAP+Authentication&description=This+authent
icates+user+against+the+LDAP+directory.&required_
parameter0=id%3DUID%26name
%3DLDAP+User+ID%26desc%3DLDAP+User+ID
%26type%3Dstring%26option
%3D&required_parameter1=id%3DPASSWORD
%26name%3DLDAP+Password%26desc
%3DLDAP+Password%26type%3Dpassword
%26option%3D

Extended Login
Request

ui.title.en=LDAP
Authenticaiton

11
minimum_length,
maximum_length

The values for both 'minimum_length' or
'maximum_length' should be number.

Ex:

s=73&msg_type=11&maximum_length=10&minimu
m_length=4

New Pin Request

9 pdu_size,pdu_data

The value for 'pdu_size' pameters should be number.
The value for 'pdu_data' should be the string
representation of the URL encoded data.
Each unprintable byte of the pdu data is represented in
Hex by a '%' followed by two characters.

Ex:

s=68&msg_type=9&pdu_size=12&pdu_data=
%00%A4%04%00%07%62%76%01%FF
%00%00%00

Token PDU
Request

13
operation,
result,
message

The value for 'operation' parameter should be either 1,
3, or 5.
The value for "result" parameter is either 0 for success
or 1 for failure.
The value for "message" parameter are defined in:

pki/base/tps/src/include/processor/RA_Processor.h

Ex:

s=42&msg_type=13&operation=5&result=0&message
=0

End Op

14
current_state,next_ta
sk_name

current_state is a number between 1-100 that gives the
client an idea how far the process is along.
next_task_name is a string representing the next task
to take place in the process. Client currently makes no
use of next_task_name.

Ex:

s=67&msg_type=14¤t_state=10&next_task_na
me=PROGRESS_APPLET_UPGRADE'

Status Update
Request

Here provided a sample transaction. (Work in progress)

From ESC to TPS From TPS to ESC Description

POST /nk_service HTTP/1.1
Host: broom:1924
Transfer-Encoding: chunked

1b
s=22&msg_type=2&operation=
3

Note that "Transfer-Encoding: chunked" is being used so
that the server will response in chunked encoding.

"1b" is the size of the chunk in hex representation.

HTTP/1.1 200 OK
Server: Netscape-Enterprise/6.1
Date: Thu, 09 Oct 2003 20:37:47
GMT
Content-type: text/plain
Transfer-Encoding: chunked

26
s=33&msg_type=3&invalid_pw=0&b
locked=0

... ...

4f
s=74&msg_type=9&pdu_size=18&pd
u_data=%84%04%...%DA%81

2b
s=38&msg_type=10&pdu_data
=%90%00&pdu_size=2

0
0 as chunk size indicates that there is no more chunk and
the client should terminate.

2.2 Protocol Between TPS and CA

The square brackets "[]" are for the purpose of emphasizing the format here and are not part of the
syntax
From RA to CA Response From CA to RA Description

POST //ca/profileSubmitSSLClient?
profileId=caTokenUserSigningKeyEnroll
ment&
tokscreenname=[TOKEN_CUID]&
publickey=[PUBLIC_KEY]
HTTP/1.1

The profileId shows that this is
for "House Key" enrollment.
the [TOKEN_CUID] is the house key token's
Card Unique Identifier, which is a verifiable unique
value on the token.
The [PUBLIC_KEY] is the normalized public key
value.
Each unprintable byte of the public key value is
represented by a '%' followed by two characters.

HTTP/1.1 200 OK^M
Server: Netscape-
Enterprise/6.1 ^M
Date: Mon, 01 Dec 2003
23:25:22 GMT^M

Note, currently the response format is a Javascript
inherited
from browser enrollments. It may be streamlined later
for real
production.

Content-type: text/html^M
Content-length: 5036^M
^M
[response including
certificate if successful]

POST //ca/profileSubmitSSLClient?
profileId=caTokenUserSigningKeyEnroll
ment&
screenname=[USER_ID]&
publickey=[PUBLIC_KEY]
HTTP/1.1

The profileId shows that this is
for "Net Key" enrollment.
The [USER_ID] is an account user name.
The [PUBLIC_KEY] is the normalized public key value

HTTP/1.1 200 OK^M
Server: Netscape-
Enterprise/6.1 ^M
Date: Mon, 01 Dec 2003
23:25:22 GMT^M
Content-type: text/html^M
Content-length: 5036^M
^M
[response including
certificate if successful]

Note, currently the response format is a Javascript
inherited
from browser enrollments. It may be streamlined later
for real
production.

Here provided one sample transaction for each profile (SigningKey and EncryptKey):

From TPS to CA
Response From CA to
TPS

Description

POST //ca/profileSubmitSSLClient?
profileId=caTokenUserSigningKeyEnrollment&
tokencuid=0000305600001c3eff00&
publickey=MIGfMA0GCSqGSIb3DQEBAQU
AA4GNADCBiQKBgQCfLJSRHNh7v6k7cV%2Fix
FrDy2B4%0D%0AOuJB7Eejh25LRMTZpIFanEpZFG
23yBp0ZiQlWQp4L2mqE%2BIh2cfO9otzHv%2BajM0K
%0D%0AuPKh7HlYcuFxXJFiyYN0KVJEanRR%2FInGo
2wuespYB9lXChqVl6GoNmo%2FRGntEgzl%0D%0AhGs
GtoHxlYoFpsf0RwIDAQAB
 HTTP/1.1

HTTP/1.1 200 OK^M
Server: Netscape-
Enterprise/6.1 ^M
Date: Mon, 01 Dec 2003
23:25:22 GMT^M
Content-type:
text/html^M
Content-length: 5036^M
^M
[...response including
certificate if
successfu...l]

Note, currently the response format is a
Javascript inherited from browser
enrollments. It may be
streamlined later for real production.

POST //ca/profileSubmitSSLClient?
profileId=caTokenUserEncryptKeyEnrollment&
screenname=msg4cfu&
publickey=MIGfMA0GCSqGSIb3DQEBAQUAA4GNA
DCBiQKBgQDM9uZ16%2BeyF9ki%2BA%2F3PZjQDu
WA%0D%0A1NWg%2Fo%2Fg8aoU7xWniMwMUzc2aS
Q%2F1kceD%2BVWiYX3D7YsUpI5Qw7ohGKDLYsC
IhtD%0D%0AK1L18MYBUx1z4uDNU2uV8N26fSaGRl
u0%2BNLNXGYUf4PDhPocQj07nVPWqFCWTSTU
%0D%0AcCY8sUM1hMpfpbb93wIDAQAB
HTTP/1.1

HTTP/1.1 200 OK^M
Server: Netscape-
Enterprise/6.1 ^M
Date: Mon, 01 Dec 2003
23:25:22 GMT^M
Content-type:
text/html^M
Content-length: 5036^M
^M
[...response including
certificate if
successful...]

Note, currently the response format is a
Javascript inherited
from browser enrollments. It may be
streamlined later for real
production.

2.3 Protocol Between TPS and TKS

TKS is the component that manages the master key(s), the transport key(s) and the token keys. The token
keys may not be stored physically in TKS but they can be generated dynamically by using the CUID and the
master key. Due to the importance of these keys, our requirement is that the token (Mac Key, Auth Key, and
KEK Key) keys should never leave TKS. (We may need to adjust this requirement if we may to do key
updates (diversification) from the server).

The channel between TPS and TKS is protected by SSL with client authentication. The client certificate must
be registered in TKS as an agent certificate prior to any operations.

TKS supports the following requests:

Request URI
HTTP POST
Parameters

Output Parameters Remark

ComputeSessionKey
Request

https://<host>:<agent_po
rt>/tks/computeSessionK
ey

CUID=<CUID>&
card_challenge=<CardCh
allenge>&
host_challenge=<HostCh
allenge>&
KeyInfo=<KeyInfo>&
card_cryptogram=<Card
Cryptogram>

where,

<CUID> - Token ID
<CardChallenge> - Card
Challenge

status=<status code>&
sessionKey=<Session
Key>&
hostCryptogram=<HostCr
yptoGram>&
encSessionKey=<Encrypt
ion Session Key>

where,

<status> - 0 for success,
non-zero for failure.
<Session Key> - Session
Key that RA used to mac

TKS is to calculate the
"card cryptogram" and
compare that with the
card_cryptogram sent
in by the token. The
status will be non-zero
if they don't match.
TKS will also generate
a "host cryptogram" to
be sent back to the
card for the card side
of authentication.
Retrieving the Mac'ing
session key and

<HostChallenge> - Host
Challenge
<KeyInfo> - Master Key
ID (we could use Key
Info Data from the token)
<CardCryptogram> -
value generated by the
token that is to be
verified by TKS as part
of the authentication to
complete session key
agreement.

APDUs for net key token.
<HostCryptoGram> -
value generated by TKS
that is to be verified by
the token as part of the
authentication to complete
session key agreement.
<Encryption Session
Key> - Session Key to be
used to encrypt APDU
messages. This key is
used when encryption is
turned on.

encryption session key
for RA.

EncryptData Request
https://<host>:<agent_po
rt>/tks/encryptData

data=<Data>&
CUID=<CUID>&
KeyInfo=<KeyInfo>

where,

<Data> - Data to be
encrypted with the KEK
key in TKS (i.e.
challenge)
<CUID> - Token ID
<KeyInfo> - Master Key
ID (we could use Key
Info Data from the token)

status=<status code>&
encryptedData=<Encrypte
d Data>

where,

<status> - 0 for success,
non-zero for failure.
<Encrypted Data> -
Encrypted Challenge
[16 bytes]

This is for Proof of
location. RA generates
a challenge for
enrollment, it sends
plaintext challenge to
TKS to encrypt, the
encrypted challenge is
sent to the NetKey
token. The NetKey
token will decrypt it
with its KEK Key and
put it in the proof-of-
location which is part
of the certificate
request.. RA then
verifies the proof.

KeySetChange
Request

https://<host>:<agent_po
rt>/tks/createKeySetData

newKeyInfo=<NewKeyI
nfo>&
CUID=<CUID>&
KeyInfo=<KeyInfo>

where,

<NewKeyInfo> - New
Master Key Id (the most
current Master key id
created and used by TKS)
<CUID> - Token ID
<KeyInfo> - The Master
Key Id used by the token

note: Each byte of all
binary data are
represented by a two-
character hex value
preceded by a '#'

status=<status code>&
keySetData=<newKeySet
>

where,

<status> - 0 for success,
non-zero for failure.
<newKeySet> -
key set generated with
new
master key. This key set
is encrypted with the old
KEK (key encryption
key) from the old set for
the token.

This is for key
diversification which
occurs when the
master key has been
replaced on TKS. RA
has the most current
master key version
number. When
detected, tokens with
outdated master key
version number will
received a set of new
keys generated based
on the new master
key. This function
also works backwards
to revert to older keys.

Here provided a sample transaction.

From TPS to TKS From TKS to TPS Description

POST /tks/computeSessionKey HTTP/1.1
Host: broom:1924

CUID=#af#12#00#cc...&card_challenge=#21#3a.... &
host_challenge=#33#3b...&
KeyInfo=1&
card_cryptogram=#4c#3a...

HTTP/1.1 200 OK
Server: Netscape-Enterprise/6.1
Date: Thu, 09 Oct 2003 20:37:47 GMT
Content-type: text/plain

status=0&
sessionKey=#f2#82#a2...&
hostCryptogram=#11#22...&
encSessionKey=#a1#81$43...

2.3 Protocol Between TPS and DRM

TBD

	Protocol Summary between TPS Backend Components

